Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mil Med ; 185(7-8): e1065-e1072, 2020 08 14.
Artigo em Inglês | MEDLINE | ID: mdl-32302002

RESUMO

INTRODUCTION: Hemorrhage is a leading cause of death from potentially survivable civilian and military trauma. As projected conflicts move from settings of tactical and logistical supremacy to hyper-dynamic tactical zones against peer and near-peer adversaries, protracted medical evacuation times are expected. Treatment at the point-of-injury is critical. Although crystalloids like Lactated Ringer's (LR) are ubiquitous, whole blood (WB) is the preferred resuscitation fluid following hemorrhage; however, logistical constraints limit the availability of WB in prehospital settings. Hemoglobin-based oxygen carriers (HBOCs) offer both hemodynamic support and oxygen-carrying capacity while avoiding logistical constraints of WB. We hypothesized that low-volume resuscitation of severe hemorrhagic shock with an HBOC (PEGylated carboxyhemoglobin, [PC]) would improve hemodynamic recovery and 72-hour survival; comparable to WB and superior to LR. MATERIALS AND METHODS: A total of 21 anesthetized male Sprague-Dawley rats underwent severe hemorrhagic shock followed by randomly assigned low-volume resuscitation with LR, WB, or PC, and then recovered from anesthesia for up to 72-hour observation. Mean arterial pressure (MAP) was recorded continuously under anesthesia, and arterial blood gases were measured at baseline (BL), 60 minutes post-hemorrhage (HS1h), and 24 hours post-resuscitation (PR24h). Survival was presented on a Kaplan-Meier plot and significance determined with a log-rank test. Cardiovascular and blood gas data were assessed with one-way analysis of variance and post hoc analysis where appropriate. RESULTS: All measured cardiovascular and blood chemistry parameters were equivalent between groups at BL and HS1h. BL MAP values were 90 ± 3, 86 ± 1, and 89 ± 2 mmHg for LR, PC, and WB, respectively. Immediately following resuscitation, MAP values were 57 ± 4, 74 ± 5, and 62 ± 3 mmHg, with PC equivalent to WB and higher than LR (P < 0.05). WB and LR were both lower than BL (P < 0.0001), whereas PC was not (P = 0.13). The PC group's survival to 72 hours was 57%, which was not different from WB (43%) and higher than LR (14%; P < 0.05). CONCLUSIONS: A single bolus infusion of PC produced superior survival and MAP response compared to LR, which is the standard fluid resuscitant carried by combat medics. PC was not different from WB in terms of survival and MAP, which is encouraging because its reduced logistical constraints make it viable for field deployment. These promising findings warrant further development and investigation of PC as a low-volume, early treatment for hemorrhagic shock in scenarios where blood products may not be available.


Assuntos
Choque Hemorrágico , Animais , Carboxihemoglobina , Modelos Animais de Doenças , Hemodinâmica , Masculino , Polietilenoglicóis , Ratos , Ratos Sprague-Dawley , Ressuscitação , Choque Hemorrágico/tratamento farmacológico
2.
Shock ; 53(4): 493-502, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31045989

RESUMO

BACKGROUND: Hemorrhage is the leading cause of preventable, traumatic death. Currently, prehospital resuscitation fluids provide preload but not oxygen-carrying capacity-a critical blood function that mitigates microvascular ischemia and tissue hypoxia during hemorrhagic shock. Solutions containing polymerized hemoglobin have been associated with vasoactive and hypertensive events. A novel hemoglobin-based oxygen carrier, modified with PEGylation and CO moieties (PEG-COHb), may overcome these limitations. OBJECTIVES: To evaluate the systemic and microcirculatory effects of PEG-COHb as compared with the 6% hetastarch in a rat model of hemorrhagic shock. METHODS: Male Sprague Dawley rats (N = 20) were subjected to severe, controlled, hemorrhagic shock. Animals were randomized to 20% estimated blood-volume resuscitation with either 6% hetastarch or PEG-COHb. Continuous, invasive, cardiovascular measurements, and arterial blood gases were measured. Microcirculatory measurements of interstitial oxygenation (PISFO2) and vasoactivity helped model oxygen delivery in the spinotrapezius muscle using intravital and phosphorescence quenching microscopy. RESULTS: Hemorrhage reduced mean arterial pressure (MAP), arteriolar diameter, and PISFO2, and increased lactate 10-fold in both groups. Resuscitation with both PEG-COHb and hetastarch improved cardiovascular parameters. However, PEG-COHb treatment resulted in higher MAP (P < 0.001), improved PISFO2 (14 [PEG-COHb] vs. 5 [hetastarch] mmHg; P < 0.0001), lower lactate post-resuscitation (P < 0.01), and extended survival from 90 to 142 min (P < 0.001) as compared with the hetastarch group. CONCLUSIONS: PEG-COHb improved MAP PISFO2, lactate, and survival time as compared with 6% hetastarch resuscitation. Importantly, hypertension and vasoactivity were not detected in response to PEG-COHb resuscitation supporting further investigation of this resuscitation strategy.


Assuntos
Carboxihemoglobina/uso terapêutico , Hemoglobinas/uso terapêutico , Derivados de Hidroxietil Amido/uso terapêutico , Substitutos do Plasma/uso terapêutico , Polietilenoglicóis/uso terapêutico , Ressuscitação , Choque Hemorrágico/terapia , Animais , Modelos Animais de Doenças , Masculino , Microcirculação , Ratos , Ratos Sprague-Dawley , Choque Hemorrágico/fisiopatologia
3.
Shock ; 52(1S Suppl 1): 108-115, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-29252939

RESUMO

BACKGROUND: Hemorrhage and its complications are the leading cause of preventable death from trauma in young adults, especially in remote locations. To address this, deliverable, shelf-stable resuscitants that provide therapeutic benefits throughout the time course of hemorrhagic shock and the progressive ischemic injury it produces are needed. SANGUINATE is a novel bovine PEGylated carboxyhemoglobin-based oxygen carrier, which has desirable oxygen-carrying and oncotic properties as well as a CO moiety to maintain microvascular perfusion. OBJECTIVES: To compare the crystalloid (Lactated Ringer's Solution; LRS), and the colloid (Hextend) standards of care with SANGUINATE in a post "golden hour" resuscitation model. METHODS: Rats underwent a controlled, stepwise blood withdrawal (45% by volume), were maintained in untreated hemorrhagic shock state for >60 min, resuscitated with a 20% bolus of one of the three test solutions, and observed till demise. Parameters of tissue oxygenation (PISFO2), arteriolar diameters, and mean arterial pressure (MAP) were collected. RESULTS: SANGUINATE-treated animals survived significantly longer than those treated with Hextend and LRS. SANGUINATE also significantly increased tissue PISFO2 2 h after resuscitation, whereas LRS and Hextend did not. SANGUINATE also produced a significantly higher MAP, which was hypotensive compared to baseline, that endured until demise. CONCLUSIONS: Resuscitation with SANGUINATE after prolonged hemorrhagic shock improves survival, MAP, and PISFO2 compared with standard of care plasma expanders. Since the pathologies of hemorrhagic shock and the associated systemic ischemia are progressive, preclinical studies of this nature are essential to determine efficacy of new resuscitants across the range of possible times to treatment.


Assuntos
Carboxihemoglobina/uso terapêutico , Polietilenoglicóis/uso terapêutico , Choque Hemorrágico/terapia , Animais , Carboxihemoglobina/metabolismo , Masculino , Microcirculação/fisiologia , Oxigênio/sangue , Ratos , Ratos Sprague-Dawley , Ressuscitação , Choque Hemorrágico/sangue
4.
J Cereb Blood Flow Metab ; 38(5): 755-766, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-28436705

RESUMO

Similar to patients with chronic hypertension, spontaneously hypertensive rats (SHR) develop fast core progression during middle cerebral artery occlusion (MCAO) resulting in large final infarct volumes. We investigated the effect of Sanguinate™ (SG), a PEGylated carboxyhemoglobin (COHb) gas transfer agent, on changes in collateral and reperfusion cerebral blood flow and brain injury in SHR during 2 h of MCAO. SG (8 mL/kg) or vehicle ( n = 6-8/group) was infused i.v. after 30 or 90 min of ischemia with 2 h reperfusion. Multi-site laser Doppler probes simultaneously measured changes in core MCA and collateral flow during ischemia and reperfusion using a validated method. Brain injury was measured using TTC. Animals were anesthetized with choral hydrate. Collateral flow changed little in vehicle-treated SHR during ischemia (-8 ± 9% vs. prior to infusion) whereas flow increased in SG-treated animals (29 ± 10%; p < 0.05). In addition, SG improved reperfusion regardless of time of treatment; however, brain injury was smaller only with early treatment in SHR vs. vehicle (28.8 ± 3.2% vs. 18.8 ± 2.3%; p < 0.05). Limited collateral flow in SHR during MCAO is consistent with small penumbra and large infarction. The ability to increase collateral flow in SHR with SG suggests that this compound may be useful as an adjunct to endovascular therapy and extend the time window for treatment.


Assuntos
Carboxihemoglobina/farmacologia , Circulação Cerebrovascular/efeitos dos fármacos , Circulação Colateral/efeitos dos fármacos , Acidente Vascular Cerebral/fisiopatologia , Vasodilatadores/farmacologia , Animais , Masculino , Ratos , Ratos Endogâmicos SHR , Reperfusão
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...